Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

Design and Evaluation of a Multi-source Multi-destination
Real-time Application on Content Centric Network

Asit Chakraborti, Syed Obaid Amin, Aytac Azgin and Ravishankar Ravindran
Huawei Research Center, Santa Clara, CA, USA.

{asit.chakraborti, obaid.amin, aytac.azgin, ravi.ravindran}@huawei.com

ABSTRACT

Multi-source multi-destination class of applications can range
from interactive AR/VR games and high-definition video
conferencing to non real-time file sharing applications; and
also includes similar applications in other environments in-
cluding IoT and data center. These applications require
efficient synchronization among the end points with varying
level of loss and delay tolerance. Also application specific
requirements like throughput, end-to-end latency and mo-
bility of end points impose even more stringency. IP based
solutions often fail to meet these requirements due to lack of
efficient multicast. In this paper we study this problem in
the context of multi-party video conferencing system, and
propose an information-centric solution based on content-
centric networking (CCN). CCN, with its innate support for
multicast delivery and service centricity, is used to deliver
content and control state in a secure and reliable manner.
We address the challenge of synchronizing participant states
for a real-time experience through a media agnostic notifi-
cation framework aided by service functions in the CCN
network. Then, we implement a proof-of-concept testbed
appropriate for this architecture and demonstrate its impact
using scalability, QoE and reliability metrics.

1. INTRODUCTION

Peer-to-peer architectures for content distribution has been
defined and classified in [1], furthermore there are commer-
cial solutions employing them as demonstrated in [2]. In this
class of applications, file sharing is the most common use-
case and the scenario could vary from synchronizing files
between multiple devices of a user (or synchronizing data
across a disruptive network) to the distribution of software
updates and patches to vehicles.

While users of file sharing applications can tolerate longer

synchronization latency, more stringent requirements are posed

by participants who collaborate using real-time media ele-
ments which involve audio, video or whiteboard sessions.
AR/VR applications have been gaining popularity in the
recent past and many of them require social or virtual enti-
ties to interact with multiple other entities, bringing in the
aspect of extreme network bandwidth requirements making
the problem of synchronizing application states even more
challenging. This trend suggests an increasing demand for
such advanced services that will necessitate the use of a more
efficient and robust networking architecture as the current
Internet lacks a general support for multicast and large scale
content distribution features.

We define Multi-source Multi-destination (MSMD) as a
class of applications where, a set of end points are simul-
taneously consuming and producing data, while trying to

978-1-5386-4870-4/18/$31.00 ©2018 IEEE

186

achieve a common set of application objectives. The main
underlying problem shared by the MSMD applications is
the need to efficiently synchronize the data being produced
among all the interested consumers using minimal service
and forwarding plane overhead, while adhering to applica-
tion requirements, as some applications would be intoler-
ant to data loss, while others such as real time applications
could tolerate it to a certain degree. For instance, the video
conferencing participants typically require voice packets to
be synced within 150ms [3, 4], and this becomes an order
smaller, for participants in a virtual reality (VR) session.
We have selected the case of MSMD video conferencing as
our use-case as it combines the essence of most of these ap-
plications.

There are many commercial audio/video conferencing sys-
tems (such as WebEx, Gotomeeting, Google-Hangout) that
leverages the cloud infrastructure to offer their conferencing
services. While cloud-based platforms allow these providers
to multiplex virtualized resources efficiently, these archi-
tectures continue to carry drawbacks such as: (i) being a
centralized architecture, they are prone to single-point of
failure; (i7) centralized media processing limits number of
participants per session, especially for video sessions. High
availability can be achieved by using load balancers and hot-
standby replicas, but introducing them can be complex for
a service like video conferencing. To circumvent the core
compute and bandwidth resource issues providers often use
techniques resulting in suboptimal user experience: (i) par-
ticipants are constrained in views they can choose (i.e., one
high-quality video and multiple thumb-view videos); (%)
data streams from multiple sources are first combined into
one stream by a centralized entity and then sent to partic-
ipants. Mainly through restrictions imposed on conference
sessions as agreed by service provider and users, compute
and bandwidth resources can be kept under control so that
the system can scale linearly in number of participants.

Earlier studies have shown the scalability limitations for
IP-based conferencing systems (e.g., [5, 6]). While peer-
to-peer solutions avoid some of the challenges faced by the
centralized approach, they are discouraged by the lack of
easily deployable dynamic IP multicast enabled across mul-
tiple domains that can optimize network bandwidth usage;
also these solutions offer poor design choices towards enforc-
ing trust and security [7], or handling mobile end points.

To address these problems and others, future networking
architectures with focus on content delivery have been con-
sidered to replace the current IP [8]. For instance, conferenc-
ing applications can leverage Information-Centric Network-
ing (ICN) features such as in-network multicast, caching,
and computing [9] to offer improved services. These ben-
efits are visible even in an overlay deployment mode, as

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

demonstrated through this work. Among the existing pro-
posals for ICN, a popular architecture that has gained sig-
nificant attention is Content Centric Networking (CCN) or
Named Data Networking (NDN)' architecture [10], which
aims to replace the current IP’s host-centric design with a
content-centric one. CCN utilizes a pull-based content de-
livery framework with Interest/Data primitives to efficiently
support non-realtime services like video streaming [11, 12].
However, the stringent latency requirements associated with
real-time applications bring forth additional challenges for
CCN, as they seek push-based network services. Further-
more, random join or leave by a participant requires actively
syncing a producer’s state with each consumer, while tak-
ing into account the QoE requirements for the participants.
Additionally, as consumers can go out-of-sync with produc-
ers during an active session, we need mechanisms to handle
such scenarios to re-sync user states. Existing ICN-based
approaches (such as [13]) that address these challenges to
some extent typically lack a large scale study in regards to
quality of experience for real-time MSMD communications.

This paper proposes a scalable and reliable video confer-
encing solution over CCN leveraging its ability to multicast
content and host services in the network. The service in the
network provides a generic notification framework to syn-
chronize producer and consumer states. We realize our so-
lution over a programmable CCN network that is controlled
by a CCN aware network virtualization framework, which
allows it to be amenable to edge deployment, and thereby
addressing the short-term deployment challenges for ICN.
Our contributions are listed as follows:

e We propose a CCN based conferencing architecture
that takes advantage of CCN capabilities at the net-
work layer (such as multicasting) and combines it with
an in-network service framework, that not only allows
for efficient multicasting of MSMD content but also
allows for offloading complex system components from
user entities to the network, to achieve a scalable and
resilient solution.

e We present an in-depth study of the proposed archi-
tecture in order to evaluate its unique features and
understand its operation. We utilize a large-scale per-
formance study to investigate the impact of various
MSMD communication scenarios that demonstrate its
robustness, while addressing potential bottlenecks crit-
ical to future adoption of similar schemes.

2. CONFERENCE SYSTEM DESIGN

We show in Figure 1 the proposed conferencing archi-
tecture, which is illustrated in the context of an overlaid
CCN deployment. Here we assume an operator or an en-
terprise manages a set of CCN Service Routers (CSRs) that
are strategically placed at the network edge. These edge
nodes are capable of hosting applications, in our case the
conferencing service components. The end hosts (or user
entities, UEs) simultaneously operate as both producer and
consumer, and require discovery of the service components
hosted by the CSRs to connect to and participate in the
conference sessions.

2.1 Service Orchestration

'Hereafter, we use ICN, CCN, and NDN terms interchangeably.

187

Int=Interest
N=Notification
CSR=CCN
UE=User Equipment
CID=Conference ID
SA=Sync Agent
SP=Sync Proxy
SM=Sync Manager
MT=Media Type
Ms=Media Signature

Conference Manager

Conf Creator

Network Controller (NC)

ConfNC

Service Controller (SC)

ConfSC

4. Int{N:/UE-2/SA/CID/UE-
1/MT/MS} APl
al

7.1,= Int{/CSR

1/CID/UE-1/MT/MS}

Figure 1: Conferencing System Architecture.

The management of the compute and bandwidth resources
is performed by the service orchestration layer, that lever-
ages concepts from SDN and NFV, and comprises of a Con-
ference Manager, Network Controllers and Service Controllers.
Conference Manager (CM) is a logically centralized entity in
a control plane that analyses conference requirements (e.g.,
bandwidth, computing) during provisioning and determines
the number and locations of the conference service compo-
nents. The CM can also play important security functions,
like managing group keys for each session in order to es-
tablish provenance, integrity and confidentiality of the pro-
ducer’s content.

Service Controller (SC) manages the compute virtualiza-
tion of the CSR resources, by monitoring the compute re-
source usage and provisioning service functions accordingly
at the CSRs. The Conference Service Controller (Con-
1SC) has direct knowledge of the conference service specific
components and it monitors and provisions them, reacting
as necessary to events (i.e., failure or request to provision
more instances from the CM). The Network Controller (NC)
adapts the underlying network for the name based applica-
tions, and also performs the overlay bandwidth management
to serve the hosted application network controllers. The
Conference Network Controller (ConfNC) manages the vir-
tual topology for each conference session, i.e. dynamically
programming the ICN network reachability, inter-connecting
the service components and connecting the UEs to them us-
ing named flows. It also handles UE join/leave events for
conference sessions. We use OpenStack [14] and ONOS [15]
to enable these functions.

2.2 Notification (or Name-Sync) Framework

Notification framework is used to sync the state of a pro-
ducer’s media namespace with participants in a given con-
ference session’s context. Figure 1 also shows the notifi-
cation framework, which consists of three main functional
components: Sync-Agent, Sync-Prozy, and Sync-Manager.
Sync-Agent is hosted at the UE and interacts with UE’s
producer application, which has multiple media streams to
synchronize. Similarly, at the other end, the Sync-Agent
is responsible for delivering all the updates in the form of
notifications to the consumer application.

Sync-Proxies and Sync-Managers are hosted at the CSR
and provisioned as virtual service components by the SC
to concurrently handle multiple conference sessions. Sync-
Proxy participates in conference management by notifying
the ConfNC whenever a participant registers or un-registers
with it.

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

Sync-Proxy is also responsible for managing the local noti-
fication state of each hosted conference session by keeping a
history of updates received from the hosted Sync-Agents and
the Sync-Manager. This state can be used for recovery from
disruptions as discussed in [16]. Such a notification state
is also managed by the Sync-Agent and the Sync-Manager.
Sync-Manager is responsible for managing the notifications
for the hosted conference sessions by relaying notifications
among the distributed Sync-Proxy instances in a hub-and-
spoke manner. Anytime the Sync-Manager receives an up-
date from a Sync-Proxy, the update is pushed to the remote
Sync-Proxies. The forwarding mechanism used for the noti-
fications by the SC can be smart to the extent that notifica-
tions are only pushed if there is a need for them at a given
Sync-Proxy.

The frequency at which the notification mechanism oper-
ates depends on the media type. In our solution, text-driven
notification is for every chat text committed by the partic-
ipant, whereas real-time content (audio, video) driven no-
tification is provided at a configurable periodic interval (to
manage the associated overhead). In the case of video con-
tent, Sync-Agent sends notifications per multiple group-of-
pictures (GOP) intervals. For example, if the GOP consists
of 25 frames, notifications can be sent for every key frame,
i.e, for every [25k, 25(k + 1)) frames, where k € Z7.

2.3 Naming

In the proposed conferencing framework, we define two
namespaces: (i) content (or data) namespace, which is used
for user data exchange, and (i) notification namespace, which
is used for the name-sync protocol. Data namespace (or
names, for brevity) correspond to the media content gener-
ated by the UE, and they are prefixed by the CSR, which
the UE connects to, and follows the basic format of /<CSR-

ID>/<CID>/<UE-ID>/<MT>/<[MS]>. CID (Conference-

ID) is a unique ID corresponding to the given conference
session. UE-ID identifies the producer application. MT
(Media-Type) identifies the type of content, which is either
audio, video, or text. MS (Media-Suffix) includes Media-
Type specific sub-components (for example, <frame-id> and
<chunk-id> for a video segment where a video frame has
been broken into multiple chunks). Note that the proposed
architecture is not limited to static hosts, the naming con-
vention can be modified to support mobile UEs as proposed
in [17].

Notifications are point-to-point messages exchanged be-
tween the service functions Sync-Agent, Sync-Proxy, and

Sync-Manager and follow the convention of /<CSR-ID>/<UE-
ID>/<SFN>/<[Fingerprint/>. SFN (Service Function Name)

identifies the service type. The Fingerprints are derived
from the application components of a UE’s data name that
uniquely identifies the Conference-1D, UE-ID, Media-Type,
and Media-Suffix. The information contained in the finger-
print enables consumers to accurately track the status of a
producer.

2.4 Conference Data Plane

As the CCN protocol is typically optimized for non-realtime
content delivery services, services with stringent latency re-
quirements (i.e., < 150ms and < 250ms for audio and
video services, respectively [3], in addition to the relative au-
dio/video sync requirement of +45ms to —125ms [4]) cannot
be supported efficiently by applications running on a pull-

188

Media Name Sync

Flow Feedback

Data Flow
————————————— >

v
!

Notification
Framework

Player Player
B h

Capturer Capturer Flow
¥ Controll ‘ ‘
Encoder Encoder ! Decoder | | Decoder

. nterest 1 '\ -

Content N Content A/V Sync
Processor Handler Manager

Figure 2: Producer and Consumer architectures.

Video Audio

Interest
Processor

Server Datal

based framework of CCN.? Considering the strict QoE re-
quirements for the realtime conference service, proposed ar-
chitecture requires the consumer to issue proactive requests
for content from the producer, with guidance from the notifi-
cation framework. To properly handle the proactive content
requests, producer implements an application layer buffer to
hold the proactive Interests and to enable the content to be
pushed to consumers as soon as a content object is gener-
ated. We next provide a high level functional design of the
producer and consumer nodes with reference to Figure 2.

At the producer side, video-encoder, which receives the
live content from the video-capturer, provides the applica-
tion with the encoded key/delta frames. Encoded frames are
then chunked, appended with video metadata, named and
published at the server-module’s content-processor for con-
sumption. The metadata comprises of current frame indez,
frame type and number-of-chunks. Current frame index and
frame type provide application level sequencing of packets;
while the use of number-of-chunks is discussed later in the
consumer design section. With this design, an explicit per-
frame manifest is not required, and a manifest with coarser
granularity will perform poorly in a real-time environment.
This server-module also includes an interest-processor func-
tion, which holds application-level Pending Interest Table
(A-PIT) that stores the pro-active Interests. As soon as it
is produced, the content is matched against the A-PIT to
satisfy the consumer requests. We use a similar pipeline
for the audio content, except that, as the payload size per
frame typically varies within the 10 — 50B range, the frames
do not need to be broken down into chunks.

At the consumer side, the process to display a partici-
pant’s video is initiated by the Sync-Agent through its com-
munication with the Sync-Proxy, as part of the notification
framework. In doing so, Sync-Agent acquires information
on the producer’s latest video/audio name state, which is
sufficient for the consumer to start expressing Interests and
sync with the real-time content generated by the producer.

The flow-controller in the consumer is responsible for is-
suing an estimated set of Interests periodically to fetch the
real-time content. Here, one of the challenges is to correctly
determine the variable number of chunks corresponding to
a video frame as video frame size changes with the activity
level of the remote participant. We address this problem
using the frame descriptor metadata embedded by the pro-
ducer in each video chunk, which is extracted and provided

2Latency requirement for text chat is much less stringent
and is in the order of < 1s.

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

to the flow-controller, after receiving the chunks from the
content-handler. The flow-controller can then issue addi-
tional Interests or clear out states for unneeded Interests lo-
cally. Another challenge in our design is to emulate a ‘push’
model over a ‘pull’ based architecture. To address this, the
consumer expresses proactive Interests; these are issued be-
fore the corresponding content objects are generated. The
proactive Interest expression process is guided using the no-
tification messages from the notification framework. Here
the challenge is to determine how far in future should these
proactive Interests be: if the consumer is too aggressive it
will result in wasted resources in the network and the pro-
ducer; on the other hand if these Interests are issued not
sufficiently in advance, content would be produced and not
sent towards the consumer immediately, as there would be
no pending interest in A-PIT.

During significant network disruptions that can last sec-
onds, flow-controller starts from the latest content state
learned by the notifications, while clearing out the outstand-
ing Interests for the earlier video frames. If the content-
handler module does not acknowledge the flow-controller in
regards to receiving a given chunk, flow-controller may ini-
tiate retransmission to potentially recover from the network
cache or directly from the producer. To support a smooth

playout, a de-jitter buffer can be used by the content-handler.

An A/V Sync-Manager module (AVSyncManager) can use
the timestamp information from the audio/video frames to
sync the audio/video playback before handing the content
to their respective decoders.

3. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-
posed architecture. We start by explaining the framework
used for our analysis and then present the experimental re-
sults for the performance metrics considered.

Containers

Conference Service
Manager

v // \\\

[CONservice, | CON Network
. Controller - Controller

ver ves

N e

Bridge (br0)

UES

Containers

UE4 ves

Host-3 ves

\CSR—S) |~
y o / Bridge (br0)

. Host2
Containers /

CSR-2

ve1

N e

Bridge (br0)
T 7 Host-1 = ;

CSR-1

uEs

/1P Switch

Figure 3: Emulation test bed topology.

3.1 Evaluation Framework

In [18] and [19] we presented a prototype of the system;
with 4 to 5 participants only. In this paper, to study the sys-
tem at reasonable scale of up to 40 participants, we instead
use head-less producer and consumer designs, where the pro-
ducer emulates generation of media frames, while the con-
sumer emulates the process of receiving these frames without
the playback phase. Data from our earlier prototype is used
for audio and video traffic modeling [19]. The encoder was
set to generate a GOP of 25 frames. The average size ob-
served for key-frames was 15K B, while for delta-frames was

189

around 3KB. The size of each Data chunk was 3K B that re-
sults in 5 chunks for key-frames in average and 1 chunk for
delta-frames. The consumer uses this information to main-
tain the size of Interest window. Any error in estimation is
fixed by leveraging the metadata in the received Data pack-
ets. The main components for the conferencing system
(i.e., Sync-Manager, Proxy and UEs) are implemented in
Java using jNDN library [20], while NDN Forwarding Dae-
mon (NFD) is used to achieve name-based forwarding [21]
on all network nodes. The main emulation testbed consists
of 5 host machines and 3 CSRs overlaid over the IP network.
To keep it legible we show the topology at a reduced scale
with 3 hosts only in Figure 3. UEs are implemented over
Linux Containers [22] and multiple of them can be placed
on any of the host machines. To emulate the edge deploy-
ment for the CSRs, we set 10ms latency on UE-to-CSR links
and 5ms latency on CSR-to-CSR links, depicting a relatively
faster backbone connection. Our testbed uses a mix of host
machines, ranging from lower-end i5 to higher-end i7s.

In this section, our primary goal is to demonstrate the
scalability and reliability of the proposed MSMD conferenc-
ing architecture, by focusing on two main scenarios: (7) all
nodes are both consumer and producer (NCon:NPro) and
(1) single consumer multiple producer nodes (1Con:NPro).
To study the network load, we use CPU and bandwidth uti-
lization at CSRs. At the end-hosts, we measure application-
level end-to-end latency and CPU utilization of NFD and
the conferencing application.

3.2 Latency Evaluation

In Figure 4(a), for the NCon:NPro scenario, we illustrate
the end-to-end latency performance for both the audio and
video streams from the point of view of a single consumer as
we increase the number of participants. Here, latency repre-
sents the one way delay from the producer to the consumer,
with respect to the audio or video frame generation time
up until when the frame is ready for decoding at the con-
sumer side. For both audio and video content, as we increase
the number of participants from 3 to 15, the latency values
for more than 99% frames stay below the critical thresh-
old based on our definition of service quality (i.e., less than
150ms for the audio stream and 250ms for the video stream).
However, after 15 nodes, we observed significant increase in
the latency and packet loss. This is because the number of
flows served by a CSR towards local UEs grows quadrati-
cally as we increase the number of users and single-threaded
NFD-based forwarder fails to scale well to the increase in
traffic. This issue is also discussed further in section 3.3.
We also observe that the latency for the video frames is
comparatively higher than that of audio streams. This is
because, the video frames may involve more chunks than
our estimation of future frames, resulting in a second phase
of data retrieval. We also observe that in case of 3 UEs the
consumer observed higher packet latency than 6,9 and 12
UEs as it was not able to leverage the caching/aggregation
feature provided by ICN and most of the Interests are sat-
isfied by the Producer, not by intermediate caches.

3.3 Bandwidth Utilization

This section discusses the bandwidth utilization as mea-
sured by the IP traffic at different network components. For
the NCon:NPro scenario, as the contents generated by a
client are first transmitted to its servicing CSR, and from
there unicast to the other CSRs servicing the other active

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

70

CSR1->CSRs Xxxd
CSR1<-CSRs Ezzzm

60 CSR1->UE ===

7 CSR1<-UE =3
0.8 2 5 CSR2->CSRs ——3
2 CSR2<-CSRs [
0.7 '3 CSR2->UEs zzm
B 40 CSR2<-UEs ——
& 3
o 06 3 Users (Audio) —— e
6 Users (Audio) —<— o
05 o
o
0.4 ;
03 -
12 Users (Video) -
02 , , 15 Users (Video) e
“o 50 100 150 200 250 3 6

Latency (ms)

(a) Audio/video latency performance

9
Number of participants

(b) Bandwidth utilization

80
CSR1 Proxy bozs
n 70| CSR1NFD E=zmzm N
1 CSR2 Proxy ===
CSR2 NFD =——=3
Consumer App T—2
Consumer NFD 1

60 -

50

40

CPU load

30 -

20

10

15

Number of participants

(¢) CPU utilization
Figure 4: NCon:NPro: Latency, bandwidth, and CPU usage.
30 T T T 90

L e CSR1->CSRs CSR1 Proxy oo -
CSR1<-CSRs Ezzza 80 CSR1NFD Ezza
09 | .25 CSR1->UE === CSR2 Proxy ===
@ CSR1<-UE 0—— 70 + CSR2 NFD ——=3
Q CSR2->CSRs ———3 Consumer App T——2
0.8 | 2 ,p |CSR2<-CSRs == 60 | Consumer NFD ===3
£ CSR2->UEs
07l _ 1 3 CSR2<-UEs ——— T 5ol
5 8 Producers (Audio) —+— H 15 2
3] 16 Producers (Audio) —>¢— c =] a0 L
0.6 - 24 Producers (Audio) —¥— - & 6
32 Producers (Audio) —&— 2 10 30
05 L 40 Producers (Audio) 2 [
- 8 Producers (Video) -- [}
16 Producers (Video) - z 20 -
0.4 F 24 Producers (Video) - 4 5
32 Producers (Video) -4 10
40 Producers (Video)
03 0 = - 0
0 50 100 150 200 250 8 16 24 32 40 8 16 24 32 40

Latency (ms)

(a) Audio/video latency performance

clients, we can approximate the bandwidth utilization at the
1th CSR node using the following equations:

Wiecsr,i = wéé) X Kesryi X (Ku — 1) + wéﬂ) X Kesnyi (1)
Woe«csp,1 = wég) X Kesryi X (Ku — 1) + wl(é) X Kesryi o (2)

Weses—csr,i = wf,? X (Ku—ficsa,i)-Fw[(Jé) X Kesr,i X (Nese—1) (3)

)

Wesps«—csr,i = wég X KcsR,i X (ncsa—l)—F’LU[(J? X (K/u_K/CSR,i) (4)

where ncsp represents the number of CSR nodes, kKcsr,i
represents the number of clients serviced by CSRi, k. repre-
sents the total number of clients serviced by all CSRs (for

(1)

the given session), wy;’ represents the average generated in-

terest stream rate towards a client, and w[(,ED) represents the
average per-client generated data stream rate. Here, for the
sake of simplicity, clients are assumed to generate traffic
streams at similar rates, however, our analysis can be easily
extended to cover the case for differing stream rates among
clients.

Our results, as shown in Figures 4(b), match closely with
the theoretical analysis provided above. Specifically, we ob-
serve that increasing the number of clients results in a linear
increase in bandwidth use for the CSR-to-CSR links show-
casing the benefit of name based aggregation in CCN. The
increase in bandwidth use is more pronounced on the CSR2-
to-UE links for the NCon:NPro scenario. This is because,
CSR2 has to unicast all the streams to all its clients, hence
no further downstream aggregation is possible, as shown in
Equation 2. The impact of Interest aggregation is more vis-
ible in scenarios with higher loads. For instance, for the 15-
UE case, there are 7 UEs attached to CSR2, each of which
is sending Interests to 14 other UEs, resulting in 98 Inter-
est flows. However, from CSR2 to other CSRs there would
be only 14 Interest flows due to Interest aggregation, which
provides significant savings in the upstream bandwidth.?

3Note that, we also observed that the notifications overhead is less

Number of producers

(b) Bandwidth utilization
Figure 5: 1Con:NPro: Latency, bandwidth, and CPU usage.
3.4 CPU Utilization

190

Number of producers

(¢) CPU utilization

We illustrate the average CPU utilization performance in
Figures 4(c) at the UE and CSRs, where we normalized the
values with respect to CPU cores. For the NCon:NPro sce-
nario, we observe that the CPU use for the UE application
and forwarder processes grows linearly. CSR1 serves one
client and its CPU use is manageable, but CSR2 serves an
increasing number of clients resulting in much higher growth
for the CPU usage percentage. The reason for such increase
can be explained by the unicast transmissions towards the
local participants, which also matches the bandwidth use
trend we observed earlier, making this CSR the bottleneck
for our setup. However, if we use a multi-threaded hard-
ware deployment for the NFD to balance the load of UEs
on the CSRs, the scalability performance of the system can
be significantly increased.

3.5 Consumer Scalability

To study the consumer UE scalability i.e. number of par-
ticipants it can support, we conducted different set of ex-
periments under the 1Con:NPro scenario. For this setup,
the consumer UE was attached to CSR1 while the producer
UEs were distributed to CSR2 and CSR3. By doing so, we
removed the bottleneck caused by content replication at the
CSRs. In Figure 4(a) we show the one-way latency observed
by the consumer. We notice that up to 40 producers, the
delivery rate (within play-out deadline) stays close to 100%.
The bandwidth utilization performance, which is shown in
Figure 5(b), also suggests a linear growth, as we increase the
number of producers. This is mainly because the number
of replicated streams at a CSR depends on the consumer
attached to it. In presence of only one consumer, there
is no replication of data streams, hence the growth is lin-
ear. Eventually, the CPU usage at the consumer side by the

than 2% of the overall overhead for all the considered scenarios,
limiting its impact on the overall performance.

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

UE forwarder becomes the bottleneck in this case, as shown
in Figure 5(c). Further improvements are possible by tak-
ing better advantage of multi-threading or utilizing lock-free
data structures, in addition to facilitating more efficient re-
source utilization schemes. However, such optimizations are
currently outside the scope of our research. Please note that
due to discrepancy in hardware specifications, CPU load at
different network nodes cannot be directly compared with
each other. For instance, in Figure 5(c) CSR1’s NFD shows
more CPU load than that of CSR2, even though CSR1 only
serves one consumer. This is because, CSR1 is running on
a 1.5GH z Intel processor, while CSR2 is running on a high-
end 2.99GH z Intel processor.

3.6 Recovery Performance

In Figure 6, we illustrate the benefits of caching and the
impact of packet loss on end-to-end latency performance for
audio and video frames. For this study, we used a simpli-
fied star topology with 4-UEs connecting to a single CSR.
Packet loss events are triggered using the netem on the link
that connects a UE to a CSR. We observe that even for a
real-time application with strict end-to-end latency require-
ments, it is possible to recover and play out a large per-
centage of these packets using retransmission, which demon-
strates a significant advantage for using CCN, as almost all
of these retransmitted packets are fetched from a nearby
CSR cache. Here, the TCP-like Interest Retransmission
TimeOut (IRTO) estimation, which changes dynamically
with the network state, has an obvious impact on the playa-
bility of the recovered content objects. Lower IRTO value
may result in a higher recovery rate, but at the cost of in-
creased overhead, due to higher number of overall retrans-
mission requests and possible cache misses, as the requested
content might not have been received by the servicing CSR.

10
09
08
0.7
0.6
05

CDF

04t ~ 1
03l 0% (Audio) —&— |
: 1% (Audio) —+—
02} 2% (Audio) —>—]
0% (Video) v
01} 1% (Video) @
o ‘ _ 2% (Video) -4
0 50 100 150 200 250
Latency (ms)

Figure 6: Latency of contents retrieved by request re-
transmissions after IRTO at different packet loss rates.

4. RELATED WORK

Real-time communication over ICN has been studied in
VoCCN [23], ACT [24] and NDN-RTC [13]. The first two
dealt with two-party and multi-party audio-only communi-
cation, and established the feasibility of real-time communi-
cations in ICN, while pointing out the benefits in terms of
scalability, robustness and security over similar IP based so-
lutions. NDN-RTC addressed the additional complexities
for generating, publishing, and consuming video content,
and provided novel approaches to minimize the latency us-
ing a pull based communication framework. However, the
MSMD sync features offered by NDN-RTC continue to rely
on complex heuristics implemented at the consumer end
points, such as measuring response time for Interests dur-

191

ing bootstrap phase to determine if the consumer is in sync
with the producer state. These works fail to show promising
results when it comes to scaling the solution to a large num-
ber of participants. Conversely, our solution pushes many
of these features (such as discovery and sync) towards the
network as in-network services to reduce the end host com-
plexity, which allows for better scalability and reliability.

S. CONCLUSION

In this paper, we proposed a scalable multi-source multi-
destination content distribution architecture capable of han-
dling real-time communication challenges such as random
join or leave events and fast session recovery after intermit-
tent drops. We utilized an application agnostic notification
framework that leveraged the service-friendly CCN trans-
port to support efficient name-sync among participants. We
provided an in-depth discussion of the proposed architecture
and evaluated its performance using a realistic CCN-based
emulation framework by studying the key performance met-
rics including bandwidth, latency, computing and resilience
to packet loss. We demonstrated its capability to effec-
tively handle more than 40 same session participants to
support not only multi-party conferencing but also multi-
source streaming towards, for instance, efficient realization
of Augmented/Virtual Reality (AR/VR) conferencing sys-
tem using CCN.

6. REFERENCES

[1] Stephanos Androutsellis-Theotokis and Diomidis Spinellis.
A survey of peer-to-peer content distribution technologies.
ACM Computing Surveys, 36(4):335-371, December 2004.
Use Cases Archives - Resilio Blog,
https://www.resilio.com/blog/category /usecases.

Yan Chen, Toni Farley, and Nong Ye. QoS requirements of
network applications on the Internet. IKSM, pages 55-76,
Jan 2004.

ITU-R BT.1359-1 1, https://www.itu.int/dms_pubrec/
itu-r/rec/bt/R-REC-BT.1359-1-199811-I!!PDF-E.pdf.
Y. Lu, et al. Measurement study of multi-party video
conferencing. In IFIP Networking, pages 96U—-108, 2010.
Y. Xu, et al. Video telephony for end-consumers:
Measurement study of Google+, iChat, and Skype.
IEEE/ACM ToN, 22(3):826-839, June 2014.

A Survey of Peer-to-Peer Network Security Issues,
http://wuw.cse.wustl.edu/~jain/cseb71-07/ftp/p2p/.
Jianli Pan, Subharthi Paul, and Raj Jain. A survey of the
research on future Internet architectures. IEEE
Communications Magazine, pages 26-36, Jul 2011.

B. Ahlgren, et al. A survey of information-centric
networking. IEEE Communications Magazine, pages
26-36, Jul 2012.

Van Jacobson, et al. Networking named content. In
CoNEXT’09, pages 1-12, New York, NY, USA, 2009. ACM.
S. Lederer, et al. Adaptive streaming over content centric
networks in mobile networks using multiple links. In IEFE
I1CC’18 IMC Workshop, pages 677681, Jun 2013.

Y. Liu, et al. Dynamic adaptive streaming over CCN: A
caching and overhead analysis. In IEEE ICC’13, pages
3629-3633, Jun 2013.

Peter Gusev and Jeff Burke. NDN-RTC: Real-time
videoconferencing over named data networking. In ACM
ICN’15, pages 117-126, New York, NY, USA, 2015. ACM.
OpenStack. https://www.openstack.org/.

ONOS. [Project Website]: http://www.onlab.us/.

R. Ravindran, et al. Towards software defined icn based
edge-cloud services. In IEEE CloudNet’13, pages 227235,
Nov 2013.

(2]

(3]

(10]

(11]

(12]

(13]

(14]
[15]
[16]

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

[17] A. Azgin, et al. Seamless producer mobility as a service in
information centric networks. In ACM ICN 2016, IC5G
Workshop, 2016.

[18] A. Jangam, et al. Realtime multi-party video conferencing
service over information centric network. In IEEE
ICMEW’15, pages 1-6, Jun 2015.

[19] Asit Chakraborti, et al. Icn based scalable audio-video
conferencing on virtualized service edge router (vser)
platform. In ICN’15, pages 217-218. ACM, 2015.

[20] J Thompson and A Brown. A named data networking
client library for java.

[21] Alexander Afanasyev, et al. Nfd developer’s guide.

[22] Linux Containers (LXC),
https://help.ubuntu.com/lts/serverguide/lxc.html.

[23] Van Jacobson, et al. VoCCN: Voice-over content-centric
networks. In ReArch’09, pages 1-6, New York, NY, USA,
2009. ACM.

[24] Z. Zhu, et al. ACT: Audio conference tool over named data
networking. In ACM SIGCOMM Workshop on ICN, 2011.

192

